Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(5): e0234221, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34700373

RESUMO

The recent emergence and spread of zoonotic viruses highlights that animal-sourced viruses are the biggest threat to global public health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an HKU2-related bat coronavirus that was spilled over from Rhinolophus bats to swine, causing large-scale outbreaks of severe diarrhea disease in piglets in China. Unlike other porcine coronaviruses, SADS-CoV possesses broad species tissue tropism, including primary human cells, implying a significant risk of cross-species spillover. To explore host dependency factors for SADS-CoV as therapeutic targets, we employed genome-wide CRISPR knockout library screening in HeLa cells. Consistent with two independent screens, we identified the zinc finger DHHC-type palmitoyltransferase 17 (ZDHHC17 or ZD17) as an important host factor for SADS-CoV infection. Through truncation mutagenesis, we demonstrated that the DHHC domain of ZD17 that is involved in palmitoylation is important for SADS-CoV infection. Mechanistic studies revealed that ZD17 is required for SADS-CoV genomic RNA replication. Treatment of infected cells with the palmitoylation inhibitor 2-bromopalmitate (2-BP) significantly suppressed SADS-CoV infection. Our findings provide insight on SADS-CoV-host interactions and a potential therapeutic application. IMPORTANCE The recent emergence of deadly zoonotic viral diseases, including Ebola virus and SARS-CoV-2, emphasizes the importance of pandemic preparedness for the animal-sourced viruses with potential risk of animal-to-human spillover. Over the last 2 decades, three significant coronaviruses of bat origin, SARS-CoV, MERS-CoV, and SARS-CoV-2, have caused millions of deaths with significant economy and public health impacts. Lack of effective therapeutics against these coronaviruses was one of the contributing factors to such losses. Although SADS-CoV, another coronavirus of bat origin, was only known to cause fatal diarrhea disease in piglets, the ability to infect cells derived from multiple species, including human, highlights the potential risk of animal-to-human spillover. As part of our effort in pandemic preparedness, we explore SADS-CoV host dependency factors as targets for host-directed therapeutic development and found zinc finger DHHC-type palmitoyltransferase 17 is a promising drug target against SADS-CoV replication. We also demonstrated that a palmitoylation inhibitor, 2-bromopalmitate (2-BP), can be used as an inhibitor for SADS-CoV treatment.


Assuntos
Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alphacoronavirus/patogenicidade , Proteínas do Tecido Nervoso/metabolismo , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alphacoronavirus/efeitos dos fármacos , Animais , COVID-19/metabolismo , Células HeLa , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Proteínas do Tecido Nervoso/genética , Palmitatos/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Suínos
2.
Viruses ; 13(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34578406

RESUMO

The porcine epidemic diarrhea virus (PEDV) is an Alphacoronavirus (α-CoV) that causes high mortality in infected piglets, resulting in serious economic losses in the farming industry. Hypericin is a dianthrone compound that has been shown as an antiviral activity on several viruses. Here, we first evaluated the antiviral effect of hypericin in PEDV and found the viral replication and egression were significantly reduced with hypericin post-treatment. As hypericin has been shown in SARS-CoV-2 that it is bound to viral 3CLpro, we thus established a molecular docking between hypericin and PEDV 3CLpro using different software and found hypericin bound to 3CLpro through two pockets. These binding pockets were further verified by another docking between hypericin and PEDV 3CLpro pocket mutants, and the fluorescence resonance energy transfer (FRET) assay confirmed that hypericin inhibits the PEDV 3CLpro activity. Moreover, the alignments of α-CoV 3CLpro sequences or crystal structure revealed that the pockets mediating hypericin and PEDV 3CLpro binding were highly conserved, especially in transmissible gastroenteritis virus (TGEV). We then validated the anti-TGEV effect of hypericin through viral replication and egression. Overall, our results push forward that hypericin was for the first time shown to have an inhibitory effect on PEDV and TGEV by targeting 3CLpro, and it deserves further attention as not only a pan-anti-α-CoV compound but potentially also as a compound of other coronaviral infections.


Assuntos
Alphacoronavirus/efeitos dos fármacos , Alphacoronavirus/fisiologia , Antracenos/farmacologia , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Infecções por Coronavirus/virologia , Perileno/análogos & derivados , Replicação Viral/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antivirais/química , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Ativação Enzimática/efeitos dos fármacos , Modelos Moleculares , Perileno/farmacologia , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Proteínas Recombinantes , Relação Estrutura-Atividade , Suínos , Doenças dos Suínos/virologia , Células Vero
3.
Antiviral Res ; 166: 11-18, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30905822

RESUMO

Swine enteric coronaviruses (SECoVs), including porcine epidemic diarrhea virus (PEDV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine deltacoronavirus (PDCoV) have emerged and been prevalent in pig populations in China for the last several years. However, current traditional inactivated and attenuated PEDV vaccines are of limited efficacy against circulating PEDV variants, and there are no commercial vaccines for prevention of PDCoV and SADS-CoV. RNA interference (RNAi) is a powerful tool in therapeutic applications to inhibit viral replication in vitro. In this study, we developed a small interfering RNA generation system that expressed two different short hairpin RNAs (shRNAs) targeting the M gene of PEDV and SADS-CoV and the N gene of PDCoV, respectively. Our results demonstrated that simultaneous expression of these specific shRNA molecules inhibited expression of PEDV M gene, SADS-CoV M gene, and PDCoV N gene RNA by 99.7%, 99.4%, and 98.8%, respectively, in infected cell cultures. In addition, shRNA molecules significantly restricted the expression of M and N protein, and impaired the replication of PEDV, SADS-CoV, and PDCoV simultaneously. Taken together, this shRNAs expression system not only is proved to be a novel approach for studying functions of various genes synchronously, but also developed to test aspects of a potential therapeutic option for treatment and prevention of multiple SECoV infections.


Assuntos
Alphacoronavirus/genética , Infecções por Coronavirus/veterinária , Coronavirus/genética , Vírus da Diarreia Epidêmica Suína/genética , RNA Interferente Pequeno , Alphacoronavirus/efeitos dos fármacos , Animais , China , Coronavirus/efeitos dos fármacos , Infecções por Coronavirus/genética , Infecções por Coronavirus/terapia , Genes Virais , Terapia Genética , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/uso terapêutico , Suínos , Doenças dos Suínos/terapia , Doenças dos Suínos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...